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Subiect la Matematică

1. Se consideră sistemul de ecuaţii liniare:  x + y + z = 3
mx + y + z = 3
x + my + m2z = 3,

unde m ∈ R este un parametru real oarecare.
a) Calculaţi determinantul matricei coeficienţilor necunoscutelor sistemului de mai sus.
b) Rezolvaţi sistemul pentru m = −1.
c) Determinaţi valorile parametrului m ∈ R pentru care sistemul este compatibil.

2. Se consideră funcţia f : R −→ R definită prin:

f(x) =


x2 − 1 , dacă |x| ≥ 1,

e− ex
2

, dacă |x| < 1.

a) Să se determine mulţimea punctelor ı̂n care f este continuă.
b) Să se determine mulţimea punctelor ı̂n care f este derivabilă.
c) Să se determine mulţimea punctelor de extrem local ale funcţiei f .

3. Se consideră funcţia f : R −→ R,
f(x) = xex + 1 .

a) Determinaţi intervalele de monotonie ale funcţiei f .
b) Determinaţi valorile reale ale lui m pentru care ecuaţia f(x) = m admite exact două soluţii reale şi distincte.
c) Arătaţi că f admite primitive şi orice primitivă a lui f este strict crecsătoare.
d) Calculaţi ∫ 1

0

f(x) dx.

4. Pe mulţimea A = (−1, 1) considerăm operaţia ∗ definită prin

x ∗ y =
x + y

xy + 1
, pentru orice x, y ∈ A.

a) Arătaţi că funcţia f : R −→ A definită prin

f(x) =
e2x − 1

e2x + 1
, pentru orice x ∈ R,

este un izomorfism de la (R,+) la (A, ∗).
b) Arătaţi că (A, ∗) este un grup comutativ.
c) Arătaţi că pentru orice m ∈ A ecuaţia x ∗ x = m are o unică soluţie x ∈ A.

Notă: Toate subiectele sunt obligatorii şi se notează cu note cuprinse ı̂ntre 1 şi 10.
Timp de lucru: 3 ore.
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Soluţii şi barem de corectare la Matematică

1. Se consideră sistemul de ecuaţii liniare:  x + y + z = 3
mx + y + z = 3
x + my + m2z = 3,

unde m ∈ R este un parametru real oarecare.
a) Calculaţi determinantul matricei coeficienţilor necunoscutelor sistemului de mai sus.
b) Rezolvaţi sistemul pentru m = −1.
c) Determinaţi valorile parametrului m ∈ R pentru care sistemul este compatibil.

Soluţie:
start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1p
a) Matricea A a coeficienţilor necunoscutelor sistemului dat este

A =

 1 1 1
m 1 1
1 m m2

 .

Calculând determinantul(cu definiţia, sau cu regula lui Sarrus, sau cu regula triunghiului, sau dezvoltând dupa una
dintre liniile sau coloanele matricei), se obţine det(A) = −m3 + 2m2 −m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3p
b) Pentru m = −1 avem că ∆ = det(A) = 4 6= 0, astfel că se poate folosi regula lui Cramer. Avem:

∆x =

∣∣∣∣∣∣
3 1 1
3 1 1
3 −1 1

∣∣∣∣∣∣ = 0 , ∆y =

∣∣∣∣∣∣
1 3 1
−1 3 1

1 3 1

∣∣∣∣∣∣ = 0 , ∆z =

∣∣∣∣∣∣
1 1 3
−1 1 3

1 −1 3

∣∣∣∣∣∣ = 12 ,

astfel că x = ∆x

∆ = 0, y =
∆y

∆ = 0, z = ∆z

∆ = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3p

c) Conform a) avem că det(A) = −m(m−1)2. Notând cu A matricea extinsă a sistemului, pentru m ∈ R\{0, 1} avem
că det(A) 6= 0, astfel că 3 = rang(A) ≤ rang(A) ≤ 3, şi rezultă că rang(A) = rang(A) = 3 şi sistemul este compatibil
determinat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1p

Pentru m = 0, avem det(A) = 0 şi cum mp =

∣∣∣∣ 1 1
0 1

∣∣∣∣ = 1 6= 0, iar

mcar =

∣∣∣∣∣∣
1 1 3
0 1 3
1 0 3

∣∣∣∣∣∣ = 3 6= 0 ,

rezultă, conform criteriului lui Rouché, că sistemul este incompatibil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1p
Pentru m = 1, A şi A sunt matrice nenule având cele trei linii identice, astfel că rang(A) = rang(A) = 1 şi sistemul
este compatibil(se poate şi observa direct că x = y = z = 1 este ı̂n acest caz o soluţie a sistemului). Prin urmare,
sistemul este compatibil dacă şi numai dacă m ∈ R \ {0}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1p.

�

2. Se consideră funcţia f : R −→ R definită prin:

f(x) =


x2 − 1 , dacă |x| ≥ 1,

e− ex
2

, dacă |x| < 1.



a) Să se determine mulţimea punctelor ı̂n care f este continuă.
b) Să se determine mulţimea punctelor ı̂n care f este derivabilă.
c) Să se determine mulţimea punctelor de extrem local ale funcţiei f .

Soluţie:
start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1p
Explicitând, avem că

f(x) =

 g(x) , dacă x ∈ (−∞,−1] ∪ [1,∞),

h(x) , dacă x ∈ (−1, 1),

unde g, h : R −→ R sunt funcţiile definite prin g(x) = x2− 1, respectiv h(x) = e− ex
2

, pentru orice x ∈ R. Funcţiile g
şi h sunt elementare, fiind compuse de funcţii elementare. Prin urmare, ele sunt continue şi derivabile pe orice interval
deschis I ⊆ R.
a) Avem atunci că f este continuă pe mulţimea (−∞,−1) ∪ (−1, 1) ∪ (1,∞). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1p
În punctul x = −1 avem că:

lim
x↗−1

f(x) = lim
x↘−1

f(x) = f(−1) = 0 ,

astfel că f este continuă ı̂n x = −1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1p
Analog, ı̂n x = 1:

lim
x↗1

f(x) = lim
x↘1

f(x) = f(1) = 0 ,

deci f este continuă ı̂n x = 1. Rezultă că f este continuă pe R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1p
b) Ca mai sus, f este derivabilă pe mulţimea (−∞,−1)∪(−1, 1)∪(1,∞), şi f ′(x) = g′(x) = 2x,∀x ∈ (−∞,−1)∪(1,∞),

respectiv f ′(x) = h′(x) = −2xex
2

,∀x ∈ (−1, 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1p
În x = −1 avem

lim
x↗−1

f(x)− f(−1)

x− (−1)
= lim

x↗−1

x2 − 1

x + 1
= −2,

respectiv

lim
x↘−1

f(x)− f(−1)

x− (−1)
= lim

x↘−1

e− ex
2

x + 1
= −e · lim

x↘−1

ex
2−1 − 1

x2 − 1
· x

2 − 1

x + 1
= −e · 1 · (−2) = 2e.

Deoarece f ′s(−1) 6= f ′d(−1), funcţia f nu este derivabilă ı̂n x = −1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1p
Analog se arată că f ′s(1) = −2e 6= 2 = f ′d(1) şi f nu este derivabilă ı̂n x = 1. Prin urmare, f este derivabilă pe
R \ {−1, 1}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1p
(Alternativ se poate folosi consecinţa teoremei lui Lagrange: Funcţia f este continuă pe R, derivabilă pe R \ {−1, 1}
şi există limitele laterale ı̂n x = −1 şi x = 1 ale derivatei lui f , astfel că există derivatele laterale:

f ′s(−1) = lim
x↗−1

f ′(x) = lim
x↗−1

2x = −2, f ′d(−1) = lim
x↘−1

f ′(x) = lim
x↘−1

−2xex
2

= 2e,

f ′s(1) = lim
x↗1

f ′(x) = lim
x↗1
−2xex

2

= −2e, f ′d(1) = lim
x↘1

f ′(x) = lim
x↘1

2x = 2,

şi funcţia f nu este derivabilă ı̂n x = −1 şi x = 1.)
c) Deoarece

f ′(x) =


g′(x) = 2x , dacă x ∈ (−∞,−1) ∪ (1,∞),

h′(x) = −2xex
2

, dacă x ∈ (−1, 1),

avem că f ′(x) > 0 dacă şi numai dacă x ∈ (−1, 0)∪(1,∞), respectiv f ′(x) < 0 dacă şi numai dacă x ∈ (−∞,−1)∪(0, 1).
Rezultă că f este strict crescătoare pe intervalele [−1, 0] şi [1,∞), respectiv strict descrescătoare pe intervalele (−∞,−1]
şi [0, 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2p
Rezultă că f are următoarele puncte de extrem local: x = −1 şi x = 1 sunt puncte de minim local, iar x = 0 este
punct de maxim local. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1p
(Observaţie: Extremele x = −1 şi x = 1 nu pot fi obţinute prin condiţia de anulare a derivatei, deoarece funcţia f nu
este derivabilă ı̂n aceste puncte.)

3. Se consideră funcţia f : R −→ R,
f(x) = xex + 1 .



a) Determinaţi intervalele de monotonie ale funcţiei f .
b) Determinaţi valorile reale ale lui m pentru care ecuaţia f(x) = m admite exact două soluţii reale şi distincte.
c) Arătaţi că f admite primitive şi orice primitivă a lui f este strict crecsătoare.
d) Calculaţi ∫ 1

0

f(x) dx.

Soluţie:
start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1p
a) Fiind compunere de funcţii elementare, f este elementară, şi deci continuă şi derivabilă pe R. De asemenea,
f ′(x) = (x + 1)ex, pentru orice x ∈ R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1p
Cum f ′(x) > 0 dacă şi numai dacă x > −1, respectiv f ′(x) < 0 dacă şi numai dacă x < −1, rezultă că f este strict
crescătoare pe intervalul [−1,∞) şi strict descrescătoare pe intervalul (−∞,−1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2p
b) Deoarece lim

x→−∞
f(x) = 1, iar lim

x→∞
f(x) = ∞, cum f este continuă pe R, ţinând cont de monotonia funcţiei avem

că

f((−∞,−1)) = (f(−1), lim
x→−∞

f(x)) =

(
1− 1

e
, 1

)
,

respectiv

f((−1,∞) = (f(−1), lim
x→∞

f(x)) =

(
1− 1

e
,∞
)
.

Prin urmare, ecuaţia f(x) = m are două soluţii pe R dacă şi numai dacă ecuaţia are câte o soluţie ı̂n fiecare dintre
intervalele (−∞,−1) şi (−1,∞), adică pentru

m ∈ f((−∞,−1)) ∩ f((−1,∞) =

(
1− 1

e
, 1

)
∩
(

1− 1

e
,∞
)

=

(
1− 1

e
, 1

)
.

Prin urmare, ecuaţia f(x) = m are două soluţii pe R dacă şi numai dacă m ∈
(
1− 1

e , 1
)
. . . . . . . . . . . . . . . . . . . . . . . . . . 2p

(Alternativ se poate urmări tabloul de variaţie al funcţiei f :
x −∞ −1 ∞
f ′(x) − − − 0 + + +
f(x) 1 ↘ ↘ ↘ 1− 1

e ↗ ↗ ↗ ∞
din inspectarea căruia se poate trage concluzia.)
(Alta posibilitatea este de a folosi şirul lui Rolle pentru funcţia g : R → R definită prin g(x) = f(x) − m. Avem
că g′(x) = f ′(x) = (x + 1)ex se anulează doar ı̂n −1 şi numărul soluţiilor ecuaţiei g(x) = 0 este dat de numărul
schimbărilor de semn ı̂n şirul (g(−∞) = 1−m, g(−1) = 1− 1

e −m, g(∞) =∞). Ecuaţia are două soluţii dacă şi numai
dacă 1−m > 0 > 1− 1

e −m, sau m ∈
(
1− 1

e , 1
)
.)

c) Deoarece f este continuă pe R, admite primitive pe R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1p
Fie F o primitivă a funcţiei f . Atunci F ′(x) = f(x) ≥ f(−1) = 1− 1

e > 0,∀x ∈ R, astfel că F este strict crescătoare
pe R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1p
d) Integrând prin părţi, avem∫ 1

0

f(x) dx =

∫ 1

0

(xex + 1) dx =

∫ 1

0

xex dx +

∫ 1

0

1 dx = xex|10 −
∫ 1

0

ex dx + 1 = e− (e− 1) + 1 = 2.

Astfel,
∫ 1

0
f(x) dx = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2p

(Alternativ, f(x) = xex + 1 = (x + 1)ex − ex + 1 = (f(x)− ex + x)′ şi∫ 1

0

f(x) dx = (f(x)− ex + 1)|10 = f(1)− e + 1− f(0) + 1− 1 = e + 1− e + 1 = 2.)

4. Pe mulţimea A = (−1, 1) considerăm operaţia ∗ definită prin

x ∗ y =
x + y

xy + 1
, pentru orice x, y ∈ A.

a) Arătaţi că funcţia f : R −→ A definită prin

f(x) =
e2x − 1

e2x + 1
, pentru orice x ∈ R,



este un izomorfism de la (R,+) la (A, ∗).
b) Arătaţi că (A, ∗) este un grup comutativ.
c) Arătaţi că pentru orice m ∈ A ecuaţia x ∗ x = m are o unică soluţie x ∈ A.

Soluţie:
start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1p

a) Ecuaţia f(x) = y este echivalentă cu e2x = 1−y
1+y , care are pentru orice y ∈ (−1, 1) soluţia unică x = 1

2 · ln
(

1−y
1+y

)
.

Rezultă că funcţia f este bijectivă, cu inversa g : A→ R, g(y) = 1
2 · ln

(
1−y
1+y

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2p

Pentru orice x, y ∈ R are loc

f(x) ∗ f(y) =
f(x) + f(y)

f(x) · f(y) + 1
=

(e2x − 1)(e2y + 1) + (e2x + 1)(e2y − 1)

(e2x − 1)(e2y − 1) + (e2x + 1)(e2y + 1)
=

e2(x+y) − 1

e2(x+y) + 1
= f(x + y),

astfel că f este morfism de la (R,+) la (A, ∗). Rezultă că f este un morfism bijectiv, deci un izomorfism.. . . . . . . . .2p
b) Deoarece f : (R,+)→ (A, ∗) este un izomorfism, iar (R,+) este un grup comutativ, rezultă că (A, ∗) este un grup
comutativ.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2p
c) Ecuaţia x ∗ x = m se transcrie sub forma 2x

x2+1 = m. Dacă m = 0, singura soluţie a ecuaţiei este x = 0.

Pentru m ∈ A \ {0} ecuaţia este echivalentă cu mx2 − 2x + m = 0. Discriminantul acestei ecuaţii de grad doi este
∆ = 4(1 −m2) > 0 pentru orice m ∈ A. Rezultă că ecuaţia are două soluţii reale distincte x1, x2, al căror produs
este x1x2 = m

m = 1, astfel că exact una dintre ele este de modul subunitar. Rezultă că ecuaţia x ∗ x = m are o unică
soluţie x ∈ A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3p
(Alternativ, folosind izomorfismele f şi g, ecuaţia este echivalentă cu g(x ∗x) = g(m), sau, echivalent, 2 · g(x) = g(m),
cu soluţia unică x = f

(
1
2 · g(m)

)
.)


